skip to main content


Search for: All records

Creators/Authors contains: "Williams, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Failure analysis is central to the work of engineers, and yet we neglect to analyze our failures in the field of engineering education. In this paper, we examine our failure in the development and deployment of an immersive faculty experience for graduate students in engineering education. Professional development is a significant focus of graduate studies. Professional development broadly defined includes any activities supporting the acquisition of skills, knowledge, and abilities relevant to one’s current or desired position. In the context of graduate studies, professional development often involves such activities as conference or workshop attendance, internships or job exploration, mentoring or coaching directed at students, and certification programs. Despite the importance of professional development in graduate school, anecdotal and research-based evidence supports the assertion that graduate students experience professional development unevenly. Whether this unevenness results from intrinsic or extrinsic factors is not established. We investigate the barriers to participation in professional development, with a focus on an immersive faculty internship; however, this work revealed barriers associated with professional development in general and related to specific other types of professional development. We focus on barriers specifically because engineers examine both successes and failures in the effort to improve product design, and because our product—an immersive faculty experience for graduate students—was designed to overcome barriers identified during customary discovery research. For this analysis of failure, we rely on interviews and survey data from varied stakeholders (e.g., graduate students, their mentors, graduate program directors, representatives from grant-giving organizations, and faculty on hiring committees) to identify these barriers. We also share our personal reflections on the challenges associated with this effort. From the data collected from members of the engineering education community, we found that barriers to participation include time spent away from support systems, potential delays in graduation, lack of understanding of the value of professional development, and funding for participating in these opportunities. Graduate students perceive (rightly or wrongly) that their advisors do not support an immersive, off-site professional development experience, perhaps because advisors want graduate students to continue the work important to advisors or the advisors do not consider the experience valuable for cultivating the students’ professional identities. In addition, organizational challenges include facilitating a multi-site experience from a single institution that is subject to both institutional and NSF rules for budgeting. Stakeholders in graduate education have a significant interest in removing barriers to professional development, including opportunities like immersive internships. By doing so, they increase graduate students’ satisfaction with the graduate school experience and improve graduate students’ placement and career success. We connect our failure to both the concept of root cause failure analysis and the literature in organizational change. By doing so, we highlight how failure is an under-appreciated experience in the field of engineering education. 
    more » « less
  2. null (Ed.)
    Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessible to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project. 
    more » « less
  3. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  4. The Engineering Education departments at three large public universities are collaborating on an NSF-funded program to document the impact of the emerging EER&I community. This paper is a report on what has been learned to date. Goals of the program include (1) identifying the broader EER&I network, (2) identifying examples of EER&I impact, (3) organizing and hosting a summit of EER&I leaders to develop a systematic process for documenting the impact of EER&I, (4) piloting the process, and (5) compiling and disseminating best practices. Members of the community have been identified, including many who are conducting engineering education research without being part of a formal engineering education program, and some examples of the impact of engineering education research have been gathered. The summit has been held, and a process for documenting the impact of EER&I has been proposed. Results of the summit include a range of possible metrics that can be used to document EER&I impact and ways to communicate that impact. Some pilots have been conducted at the three collaborating schools and several other sites, and a few institutions are now preparing documentation. Results of the summit and the pilots will be shared. In their pilots, engineering education programs have been able to collect and analyze data that describe their efforts to impact how engineering is taught at the university level. Quantitative metrics include research expenditures, publications, number of graduates, positions graduates hold, faculty leadership in groups that influence engineering education policy, and so on. It has proven to be more difficult to demonstrate a direct causal relationship between those efforts and actual changes in the way engineering is taught in the traditional disciplines. The path to each change seems to be unique, and the most effective way to convey the impact is through telling each individual story. Thus, ongoing work focuses on generating a range of qualitative approaches that can be used to document and analyze these change processes. Collaborators on the NSF program are currently piloting ways to convey those stories to the many audiences interested in the results. 
    more » « less
  5. null (Ed.)
    his panel paper presents research on connecting theory to practice and the lessons learned in a change project, with a focus on team formation during the early stages of change making. An important yet often overlooked step in any change project is pulling together individuals to form a competent and efficient team. A functional change-making team requires a variety of complementary skill sets, which may come from different disciplinary backgrounds and/or different prior experiences. Kotter (1996) uses the term “guiding coalition” to refer to an effective change-making team. He identifies four key characteristics of guiding coalitions: position power, expertise, credibility, leadership. Kotter also goes on to examine the importance of trust and a common goal. In a review of the literature on guiding coalitions, Have, Have, Huijsmans, and Otto (2017) found that though the concept of a guiding coalition is widely advocated in the literature, only one study showed a moderate correlation between the existence of a guiding coalition and the success of a change process (Abraham, Griffin, & Crawford, 1999). Have et al. (2017) conclude that while the literature provides little evidence to the value of a guiding coalition, it does provide evidence that Kotter’s characteristics of a guiding coalition (position power, expertise, credibility, leadership skills, trust in leadership, and setting common goals) individually have positive effects on the outcomes of a change project. However, we don’t know how these characteristics interact. This analysis of team building and complementary skill sets emerges from our participatory action research with the NSF REvolutionizing engineering and computer science Departments (RED) teams to investigate the change process within STEM higher education. The research-to-practice cycle is integral to our project; data gathered through working with the RED teams provides insights that are then translated into applied, hands-on practices. We utilize an abductive analysis approach, a qualitative methodology that moves recursively between the data and theory-building to remain open to new or contradictory findings, keeping existing theory in mind while not developing formal hypotheses (Timmermans & Tavory, 2012). We find that many of the teams have learned lessons in the early stages of the change process around the guiding coalition characteristics, and our analysis builds on the literature by examining how these characteristics interact. For example, the expertise of the social scientists and education researchers help discern which change strategies have supporting evidence and fit the context, in addition to what is reasonable for planning, implementation, and evaluation. The results presented in this paper connect theory to practice, clarifying practices for building effective change-making teams within higher education. 
    more » « less
  6. Shared vision is an important process for change projects, serving to amplify success, increase participation, and erode the divide between project leaders and constituents. Yet there are few empirical examinations of the process of building shared vision within academic departments. Using focus groups and participant observation, this study examines shared vision development within 13 large-scale change projects in engineering and computer science higher education. We find that teams of faculty, staff, administrators, and students built shared vision with stakeholders through co-orientation, formational communication, and recognition of stakeholder autonomy. Our results delineate practices for developing shared vision for academic change projects and demonstrate the benefits of inclusive stakeholder empowerment. 
    more » « less
  7. null (Ed.)
    This Research to Practice Work in Progress paper addresses the importance of creating shared vision for change in STEM education. While many educational reform initiatives accomplish their goals in the short-term, only systemic change can truly improve quality and inclusion in engineering and computing education. Developing shared vision is an often repeated recommendation for effective and sustainable change from organizational consultants and scholars of higher education). In our work, we have found that embracing stakeholders as full partners through sharing vision is a proactive way to expose concerns and incorporate a variety of viewpoints into the change process. Shared vision is a useful concept that can be made more accessible and actionable through social scientific research on how change-making teams engage and empower stakeholders to collaborate on their projects. 
    more » « less
  8. The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
    more » « less
  9. In this theoretical paper, we highlight the scholarship of integration by exploring how customer discovery connects to other methodologies in engineering education research and the opportunities for using this methodology in engineering education research. As a result of the National Science Foundation’s Innovation Corps (I-Corps) and I-Corps for Learning initiatives, the Lean LaunchPad®/Customer Discovery methodology has grown in popularity within academic institutions, particularly in business and entrepreneurship education. In addition, the Lean LaunchPad®/Customer Discovery approach has helped startups, individuals, academics, and students test the potential of an idea, make important decisions about the structure, value, and implementation of their projects, and develop a minimum viable product, service, or offering. While the Lean LaunchPad®/Customer Discovery approach is relatively new to the fields of business, engineering education, and entrepreneurship education, its methodological background emerges from well-established qualitative research techniques. We first describe the Lean LaunchPad®/Customer Discovery process and give examples of its current use in academia. Next, we explain the connections between the Lean LaunchPad®/Customer Discovery approach and specific forms of qualitative research like design-based research, action research, and qualitative interviewing. Finally, we offer a detailed example of how our team used the Lean LaunchPad®/Customer Discovery approach to conduct an engineering education action research project. This example serves to clarify how the Lean LaunchPad®/Customer Discovery approach can be successfully applied, validated by funding received after our use of the process to develop a program. We expect that this theoretical work will add value to individuals interested in conducting action-oriented educational research projects for two reasons. First, we show how robust qualitative research methodologies provide the foundation for a popular market research approach. Second, we give an example of using this approach in an educational context. Our motivation is to expand the breadth of methodologies available to researchers and practitioners. 
    more » « less